Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Infect Dis ; 75(1): e928-e937, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1868258

ABSTRACT

BACKGROUND: Children are less susceptible to SARS-CoV-2 infection and typically have milder illness courses than adults, but the factors underlying these age-associated differences are not well understood. The upper respiratory microbiome undergoes substantial shifts during childhood and is increasingly recognized to influence host defense against respiratory pathogens. Thus, we sought to identify upper respiratory microbiome features associated with SARS-CoV-2 infection susceptibility and illness severity. METHODS: We collected clinical data and nasopharyngeal swabs from 285 children, adolescents, and young adults (<21 years) with documented SARS-CoV-2 exposure. We used 16S ribosomal RNA gene sequencing to characterize the nasopharyngeal microbiome and evaluated for age-adjusted associations between microbiome characteristics and SARS-CoV-2 infection status and respiratory symptoms. RESULTS: Nasopharyngeal microbiome composition varied with age (PERMANOVA, P < .001; R2 = 0.06) and between SARS-CoV-2-infected individuals with and without respiratory symptoms (PERMANOVA, P  = .002; R2 = 0.009). SARS-CoV-2-infected participants with Corynebacterium/Dolosigranulum-dominant microbiome profiles were less likely to have respiratory symptoms than infected participants with other nasopharyngeal microbiome profiles (OR: .38; 95% CI: .18-.81). Using generalized joint attributed modeling, we identified 9 bacterial taxa associated with SARS-CoV-2 infection and 6 taxa differentially abundant among SARS-CoV-2-infected participants with respiratory symptoms; the magnitude of these associations was strongly influenced by age. CONCLUSIONS: We identified interactive relationships between age and specific nasopharyngeal microbiome features that are associated with SARS-CoV-2 infection susceptibility and symptoms in children, adolescents, and young adults. Our data suggest that the upper respiratory microbiome may be a mechanism by which age influences SARS-CoV-2 susceptibility and illness severity.


Subject(s)
COVID-19 , Microbiota , Adolescent , Bacteria/genetics , Child , Humans , Microbiota/genetics , Nasopharynx/microbiology , SARS-CoV-2 , Young Adult
2.
Pediatrics ; 149(6)2022 06 01.
Article in English | MEDLINE | ID: covidwho-1742063

ABSTRACT

OBJECTIVES: Over 6 million pediatric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have occurred in the United States, but risk factors for infection remain poorly defined. We sought to evaluate the association between asthma and SARS-CoV-2 infection risk among children. METHODS: We conducted a retrospective cohort study of children 5 to 17 years of age receiving care through the Duke University Health System and who had a Durham County, North Carolina residential address. Children were classified as having asthma using previously validated electronic health record-based definitions. SARS-CoV-2 infections were identified based on positive polymerase chain reaction testing of respiratory samples collected between March 1, 2020, and September 30, 2021. We matched children with asthma 1:1 to children without asthma, using propensity scores and used Poisson regression to evaluate the association between asthma and SARS-CoV-2 infection risk. RESULTS: Of 46 900 children, 6324 (13.5%) met criteria for asthma. Children with asthma were more likely to be tested for SARS-CoV-2 infection than children without asthma (33.0% vs 20.9%, P < .0001). In a propensity score-matched cohort of 12 648 children, 706 (5.6%) children tested positive for SARS-CoV-2 infection, including 350 (2.8%) children with asthma and 356 (2.8%) children without asthma (risk ratio: 0.98, 95% confidence interval: 0.85-1.13. There was no evidence of effect modification of this association by inhaled corticosteroid prescription, history of severe exacerbation, or comorbid atopic diseases. Only 1 child with asthma required hospitalization for SARS-CoV-2 infection. CONCLUSIONS: After controlling for factors associated with SARS-CoV-2 testing, we found that children with asthma have a similar SARS-CoV-2 infection risk as children without asthma.


Subject(s)
Asthma , COVID-19 , Adolescent , Asthma/complications , Asthma/diagnosis , Asthma/epidemiology , COVID-19/epidemiology , COVID-19 Testing , Child , Humans , Retrospective Studies , SARS-CoV-2 , United States
3.
Clin Infect Dis ; 73(9): e2835-e2836, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1707697
4.
Clin Infect Dis ; 73(9): e2875-e2882, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501033

ABSTRACT

BACKGROUND: Child with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection typically have mild symptoms that do not require medical attention, leaving a gap in our understanding of the spectrum of SARS-CoV-2-related illnesses that the viruses causes in children. METHODS: We conducted a prospective cohort study of children and adolescents (aged <21 years) with a SARS-CoV-2-infected close contact. We collected nasopharyngeal or nasal swabs at enrollment and tested for SARS-CoV-2 using a real-time polymerase chain reaction assay. RESULTS: Of 382 children, 293 (77%) were SARS-CoV-2-infected. SARS-CoV-2-infected children were more likely to be Hispanic (P < .0001), less likely to have asthma (P = .005), and more likely to have an infected sibling contact (P = .001) than uninfected children. Children aged 6-13 years were frequently asymptomatic (39%) and had respiratory symptoms less often than younger children (29% vs 48%; P = .01) or adolescents (29% vs 60%; P < .001). Compared with children aged 6-13 years, adolescents more frequently reported influenza-like (61% vs 39%; P < .001) , and gastrointestinal (27% vs 9%; P = .002), and sensory symptoms (42% vs 9%; P < .0001) and had more prolonged illnesses (median [interquartile range] duration: 7 [4-12] vs 4 [3-8] days; P = 0.01). Despite the age-related variability in symptoms, wWe found no difference in nasopharyngeal viral load by age or between symptomatic and asymptomatic children. CONCLUSIONS: Hispanic ethnicity and an infected sibling close contact are associated with increased SARS-CoV-2 infection risk among children, while asthma is associated with decreased risk. Age-related differences in clinical manifestations of SARS-CoV-2 infection must be considered when evaluating children for coronavirus disease 2019 and in developing screening strategies for schools and childcare settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Child , Humans , Nasopharynx , Prospective Studies , Viral Load
5.
JCI Insight ; 6(17)2021 09 08.
Article in English | MEDLINE | ID: covidwho-1298004

ABSTRACT

As SARS-CoV-2 continues to spread globally, questions have emerged regarding the strength and durability of immune responses in specific populations. In this study, we evaluated humoral immune responses in 69 children and adolescents with asymptomatic or mild symptomatic SARS-CoV-2 infection. We detected robust IgM, IgG, and IgA antibody responses to a broad array of SARS-CoV-2 antigens at the time of acute infection and 2 and 4 months after acute infection in all participants. Notably, these antibody responses were associated with virus-neutralizing activity that was still detectable 4 months after acute infection in 94% of children. Moreover, antibody responses and neutralizing activity in sera from children and adolescents were comparable or superior to those observed in sera from 24 adults with mild symptomatic infection. Taken together, these findings indicate that children and adolescents with mild or asymptomatic SARS-CoV-2 infection generate robust and durable humoral immune responses that can likely contribute to protection from reinfection.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , Adolescent , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Asymptomatic Diseases , COVID-19/blood , COVID-19/pathology , Child , Female , Humans , Male , SARS-CoV-2/immunology
6.
Nat Commun ; 12(1): 1079, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1087444

ABSTRACT

SARS-CoV-2 infection has been shown to trigger a wide spectrum of immune responses and clinical manifestations in human hosts. Here, we sought to elucidate novel aspects of the host response to SARS-CoV-2 infection through RNA sequencing of peripheral blood samples from 46 subjects with COVID-19 and directly comparing them to subjects with seasonal coronavirus, influenza, bacterial pneumonia, and healthy controls. Early SARS-CoV-2 infection triggers a powerful transcriptomic response in peripheral blood with conserved components that are heavily interferon-driven but also marked by indicators of early B-cell activation and antibody production. Interferon responses during SARS-CoV-2 infection demonstrate unique patterns of dysregulated expression compared to other infectious and healthy states. Heterogeneous activation of coagulation and fibrinolytic pathways are present in early COVID-19, as are IL1 and JAK/STAT signaling pathways, which persist into late disease. Classifiers based on differentially expressed genes accurately distinguished SARS-CoV-2 infection from other acute illnesses (auROC 0.95 [95% CI 0.92-0.98]). The transcriptome in peripheral blood reveals both diverse and conserved components of the immune response in COVID-19 and provides for potential biomarker-based approaches to diagnosis.


Subject(s)
COVID-19/genetics , Gene Expression Profiling/methods , Leukocytes, Mononuclear/metabolism , Sequence Analysis, RNA/methods , Transcriptome/genetics , COVID-19/blood , COVID-19/virology , Cytokines/genetics , Host-Pathogen Interactions , Humans , Influenza, Human/genetics , Pneumonia, Bacterial/genetics , SARS-CoV-2/physiology , Signal Transduction/genetics
7.
Clin Infect Dis ; 71(8): 2006-2013, 2020 11 05.
Article in English | MEDLINE | ID: covidwho-209907

ABSTRACT

The current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), reveals a peculiar trend of milder disease and lower case fatality in children compared with adults. Consistent epidemiologic evidence of reduced severity of infection in children across different populations and countries suggests there are underlying biological differences between children and adults that mediate differential disease pathogenesis. This presents a unique opportunity to learn about disease-modifying host factors from pediatric populations. Our review summarizes the current knowledge of pediatric clinical disease, role in transmission, risks for severe disease, protective immunity, as well as novel therapies and vaccine trials for children. We then define key hypotheses and areas for future research that can use the pediatric model of disease, transmission, and immunity to develop preventive and therapeutic strategies for people of all age groups.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Adolescent , Betacoronavirus , COVID-19 , Child , Child, Preschool , Comorbidity , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/transmission , Humans , Infant , Infant, Newborn , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/transmission , Risk Factors , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL